2 Covariance of Gauge Invariant Operators Un -

نویسندگان

  • François Delduc
  • Nicola Maggiore
  • Olivier Piguet
  • Sylvain Wolf
چکیده

The cohomology of the BRS operator corresponding to a group of rigid symmetries is studied in a space of local field functionals subjected to a condition of gauge invariance. We propose a procedure based on a filtration operator counting the degree in the infinitesimal parameters of the rigid symmetry transformations. An application to Witten’s topological Yang-Mills theory is given. PACS codes: 11.15.-q (gauge field theories), 03.65.Fd (algebraic methods), 03.70 (theory of quantized fields) Supported in part by the Swiss National Science Foundation and by OFES contract 93.0083 and Human Capital and Mobility, EC contract ERBCHRXCT920069 Laboratoire de Physique Théorique ENSLAPP, URA 14-36 du CNRS, associee à l’ENS de Lyon, à l’université de Savoie et au LAPP, groupe de Lyon, ENS Lyon, Allée d’Italie 46, F-69364 Lyon, France Département de Physique Théorique, Université de Genève, quai E. Ansermet 24, CH-1211 Genève 4, Switzerland On leave of absence from Università degli Studi di Genova, Dipartimento di Fisica, Italy Instituto da F́ısica, Universidade Católica de Petrópolis, 25610-130 Petrópolis, RJ, Brazil and Centro Brasileiro de Pesquisas F́ısicas (CBPF), Rua Xavier Sigaud 150, 22290-180 Urca, RJ, Brazil On leave of absence from Département de Physique Théorique, Université de Genève, Switzerland. Supported in part by the Brazilian National Research Council (CNPq)

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Manifestly Gauge Covariant Treatment of Lattice Chiral Fermion

We propose a lattice formulation of the chiral fermion which maximally respects the gauge symmetry and simultaneously is free of the unwanted species doublers. This is achieved by directly dealing with the lattice fermion propagator and the composite operators, rather than the lattice action and the fermionic determinant. The latter is defined as a functional integral of the expectation value o...

متن کامل

Shift Invariant Spaces and Shift Preserving Operators on Locally Compact Abelian Groups

We investigate shift invariant subspaces of $L^2(G)$, where $G$ is a locally compact abelian group. We show that every shift invariant space can be decomposed as an orthogonal sum of spaces each of which is generated by a single function whose shifts form a Parseval frame. For a second countable locally compact abelian group $G$ we prove a useful Hilbert space isomorphism, introduce range funct...

متن کامل

A Note on Gauge Invariant Operators in Noncommutative Gauge Theories and the Matrix Model

In this note we discuss local gauge-invariant operators in noncommutative gauge theories. Inspired by the connection of these theories with the Matrix model, we give a simple construction of a complete set of gauge-invariant operators. We make connection with the recent discussions of candidate operators which are dual to closed strings modes. We also discuss large Wilson loops which in the lim...

متن کامل

Gauge-Invariant Operators for Singular Knots in Chern-Simons Gauge Theory

We construct gauge invariant operators for singular knots in the context of Chern-Simons gauge theory. These new operators provide polynomial invariants and Vassiliev invariants for singular knots. As an application we present the form of the Kontsevich integral for the case of singular knots. CERN-TH/97-360 December 1997

متن کامل

6 v 1 3 A ug 1 99 3 Renormalization of gauge invariant composite operators in light - cone gauge

We generalize to composite operators concepts and techniques which have been successful in proving renormalization of the effective Action in lightcone gauge. Gauge invariant operators can be grouped into classes, closed under renormalization, which is matrix-wise. In spite of the presence of nonlocal counterterms, an “effective” dimensional hierarchy still guarantees that any class is endowed ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996